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An approach commonly taken to studying problems involving heat and mass transfer in 
the flow of a fluid in channels of different shapes is reduction of the basic equations of 
convective diffusion (heat conduction) to a dispersion equation which has one less inde- 
pendent variable than the initial equations and, as a rule, has constant coefficients. This 
approach was first successfully used in the study by J. Taylor [i]. Dispersion theory is now 
quite advanced and has been the subject of an anormous number of publications (see the survey 
in [21). 

Most investigators have studied the dispersion of substances for flows with simple 
velocity profiles that are usually unidimensional. Such problems clearly do not embrace 
the entire range of hydrodynamic situations encountered under natural conditions and in 
industrial equipment. For example, when a study is being made of dispersion in curvilinear 
channels, researchers usually restrict themselves to problems in toroidal channels [3-5]. 
In this case, it is possible to use the corresponding formulas for the velocity components 
from the known solution of the hydrodynamic problem. Also of interest from a practical 
standpoint are problems involving the propagation of heat and mass in an approximation of 
dispersion theory for the channels typically encountered in studies of flows of lubricant 
layers in bearings. A considerable amount of progress has been made with regard to the 
hydrodynamic part of the problem in lubrication theory, and we will proceed on this basis. 
For the sake of definiteness, below we will concern outselves only with diffusion problems - 
although it should be clear that the results can easily be applied to other heat transfer 
problems. 

The equations of the hydrodynamic theory of lubrication are the limiting form of the 
Navier-Stokes equations in the case when the ratio of the characteristic dimensions of the 
region in different directions is small and (usually) the Reynolds numbers are low [6, 7]. 
We will use the methods of pertubation theory [8, 9] to analyze the equation of convective 
diffusion, here employing the same small parameter as in lubrication theory. In each case 
considered below, we assume that the velocity field of the fluid is known. It is further 
assumed that the field is not necessarily formed by the same mechanisms as in problems 
concerning the hydrodynamics of a lubricant layer, i.e., the mass transfer equations ob- 
tained below have a more general value. 

A characteristic of the mass transfer regions we will examine is that, in the general 
case, the boundaries of the regions do not coincide with the coordinate lines of any certain 
coordinate system. However, the deviations of the given region from a "rectangular" shape 
in the corresponding coordinates are insignificant, as is typical for problems of the 
hydrodynamic theory of lubrication. It will be expedient to conduct our study in the three 
most widely used coordinate systems: Cartesian, cylindrical, and spherical. 

i. Dispersion of a Substance in a Layer above a Flat Surface. It is natural to 
analyze the given case in a Cartesian coordinate system. The flow region is shown in Fig. 
i. We will write the main equation of convective diffusion in dimensionless form 

(i.i) 

where c is the concentration of the substance and c is a small parameter (Fig. i). Regarding 
the ratio of the characteristic scales of length in the Y- and X directions and the scales 
of the velocity components Uy and Ux, they are of the same order e as in lubrication theory 
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Fig. 1 

[ 6 ] .  Then, 

X Y Dv Ule * <Ux> 1 
x =  " T '  Y = - 2 7 '  t = - -~ - - ,  P c = - D - "  u ~ =  D 

Here, X and Y are dimensional coordinates; ~ is the characteristic length in the X direction; 
D is the diffusion coefficient; z is time; U is the characteristic velocity (scale) along the 
X axis; Pe is the Peclet number, this being assumed an independent parameter having the order 
of unity with,respect to ~; u* is the dimensionless mean velocity; <Ux> is mean flow velo- 

X 
city; and u x : - - ( U  x - -  <Ux))/U.  

Convective transport of a substance associated with the mean flow velocity is usually 
excluded by changing over to a longitudinal coordinate which moves with mean velocity. In 
our case, mean velocity is a function of x and convective transport could have been excluded 

by means of the "characteristic" p-- jd~/ux(~)--t However, in light of the fact that the 
0 

corresponding term in the convective diffusion equation has the order ~2, formal calculations 
produce the same result with the reverse transition to a "stationary" coordinate system. 
Thus, to be consistent, we should use the continuity equation in the form 

e du~/dx + Pe (au~/ax + auy,/oy) = o .  

This has no effect on the result in the zeroth approximation with respect to e, i.e. ~ it 
has no effect on the form of the dispersion equation, since the term cdu*/dx can be ignored. 

X 

It should also be noted that the choice of the scale for time ~/D and the order of Pe are 
consistent with Taylor's method of successive approximation [i]. 

Equation (i.I) is supplemented by the initial condition 

and the boundary conditions 

c It=o = c ,  (x, y) ( 1 . 2 )  

o~ =o,  ~ I =e~h' (z) ~---~ I ay y=O " ~  y=h(x) y=h(x) "~ 
( l .3)  

expressing the absence of diffusional transport of the substance to the flow region with the 
condition of vanishing of fluid velocity at the bounding surfaces (there is no convective 
transport at the bou~fiaries). The conditions with respect to the variable x are trivial 
for our analysis and will thus not be specified. 

As was shown in [10-12], in problems of the given type it is sufficient to limit one- 
self to three approximations with respect to s in the expansion 

c = C o -/- 8c z + e ~  q-- ...  ( 1 . 4 )  

in order to derive the dispersion equation of the zeroth approximation. Insertion of (1.4) 
into (i.i) and (1.3) and grouping of terms of the same order with respect to s gives us 
equations for the functions Co, cz, and c=. Meanwhile, the first two equations lead to the 
conclusion that c o is a function only of x and t (and can henceforth be denoted as c o = 
G(x, t)), while the relation for c z can be represented (after a single integration of the 
corresponding equation over y) in the form 

(l~ ~cl aG 
a-~ = Peqb:c(x'g)-b-7"z ' qb:~(x,y) = u x ( x , y )  dy. 

0 

Here, by separating the mean velocity from the overall profile, we obtain @x(X, h) =: 0 to 
within terms of the order of s. This follows from the continuity equation and results in 
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agreement with first-order boundary conditions (1.3). The equation for the function c 2 

OG * OG [ ac I Ocl/ a2C2 02G 
oi" + u ~  + P e ~ u x ~  + Uy oy / = ~ + 

is integrated over y within the limits [0, h(x)]. We also use the corresponding condition 
(1.3)[(3c2/3y = h'(x)SG/3x at y = h(x))], the continuity equation, and the relation for c I. 
As a result, we find that 

OC �9 OC t 0 h(x)[Pe~D~(x) + ll_~_x Ot -4-Ux Ox h (x) Ox 

where 
h(x) 

t 
D~ (x) = J (l)~ (x, g) dg (1 7) h ix) 

0 

is the dimensionless dispersion factor (the convective part). The "molecular" part of the 
factor is influenced by the geometry of the region (the function h(x)), which was made 
variable. It should be noted that, in the zeroth approximation with respect to ~, the 
function G is the concentration of the substance averaged over the cross section. 

The initial condition for Eq. (1.6) can be obtained after constructing an internal [8, 
9] expansion and combining the solutions of the internal and external problems. Following 
[10-12], we obtain 

h(x) 

a I~=o = G (z) = ~ ~, (~, y) @, (1.  s)  
0 

i.e., in the zeroth approximation for g initial condition (1.2) was subjected to simple 
averaging. 

2. Dispersion of a Substance in a Cylindrical Gap. In contrast to part i, we will 
make use of a cylindrical coordinate system for the present case. One of the boundaries 
of the region is the coordinate line r = E, while the second is the line r = R[I + ch(~)] 
(Fig. 2). Introducing the transverse coordinate ~ = (r - R)/gR, ~ e [0, h(cp)], we write 
the equation of convective diffusion in the dimensionless form 

( ") ( ) e2 Oe u~ Oc ur Oc Oc ( 2 . 1 )  
b - f + t - i - G  dq~ + e P e  t + G  o~ +u~-g~ = 

02c 8 Oc 82 02c 
= ' ~  + t + ~; a-~ + (~ + ~;)~ a(p ~ 

(Pe = cUB~D, t = Dx/B 2, ur = <U~> R/D) .  

As in part i, Eq. (2.1) makes it relatively easy to obtain a dispersion equatio n of 
the following form for the function of the zeroth approximation c o = g(~, t) of an expansion 
of type (1.4) 

aG ,aG ~ a r aG} 
- -  = ~h (qo) [Pc 2 De (qD) + i] 8-~ ot + u ~  h - - ~  ( 2 . 2 )  

where the convective part of the dispersion factor D~ is determined by Eq. (1.7) with re- 
placement of the variable and subscript x by ~. In essence, we have obtained an equation 
which coincides with (1.6). Similarly, (1.8) is analogous to the initial condition for 
( 2 . 2 ) .  

Equations (1.6) and (2.2) can be reduced to self-adjoint form after replacement of the 
sought function. Then, after separation of the variables and formulation of the corresponding 
Sturm-Liouville problems, we can construct the solutions of sufficiently general problems 
by the Fourier method or its generalization for inhomogeneous problems. However, in the 
general case we will not encounter the normally-studied ordinary differential equations of 
the Sturm-Liouville problem and the corresponding special functions. For (2.2), one typi- 
caliyencounters problems with solutions that are periodic with respect to ~. Furthermore, 

388 



I 
Fig. 2 

since the coefficients in (2.2) are periodic with respect to T, we obtain relatively little- 
studied problems for equations with periodic coefficients (see [13], for example). 

Since u *h is a constant equal to the rate of fluid flow through the layer, steady- 

state equation (2.2) - as (1.6) - is integrated directly and then reduced to a simple formula 
of integration. It is easily shown that the steady-state solution of (2.2), satisfying the 
conditions of periodicity, can only be constant. The value of this constant is easily found 
from the momentum conservation l alw for the system 

2 ~  2 g  2~; 

d f G(%t)h(9)d9~--O=~ f G(9, t) h(gld 9 f Go(glh(gldg, 
0 0 0 

(2.3) 

obtained from (2.2) after multiplication by h, integration over 9 for the period, and use 
of the periodicity conditions. Then by passing to the limit t ~ ~ in the second equation of 
(2.3) we obtain the steady-state solution 

G~ = .I Go (9) h (9) d h (9) dcp, 
0 

(2.4) 

which is dependent on the initial function G0(9). 

In the special case h = const and when Ux in (I.i) and u~ in (2.1) can be considered 
functions only of the transverse flow, the coordinates and the values of the dispersion fac- 
tors will be independent of x (or ~), i.e., dispersion equations (1.6) and (2.2) will contain 
constant coefficients. By choosing dimensionless coordinates and parameters, we can repre- 
sent these equations in the form 

OG/Ot + nOGD9 = 02G1092. ( 2 . 5 )  

Equation (2.5) is frequently encountered in the study of different heat- and mass trans- 
fer processes, and its solutions for various auxiliary conditions (the Dankwerst condition, 
etc.) have been well-studied (see [14]). However, problems involving mass transfer in a 
cylindrical gap are typified by nontraditional conditions corresponding to periodicity of 
the solution with respect to the cyclic coordinate q: 

G(0, t) = G(2~,  0, OG/O9 I~=o = OG/O9 [~=~=. ( 2 . 6 )  

Thus, we will obtain its solution with the usual initial condition (18) (with the replacement 
of by by 9). It is easily proven that problem (1.8), (2.5-2.6) satisfies the expression 

2~ 

G (9, t) ---- ~ -  Go ((p) d9 + {Mn sin [k (9 - -  m)] + 
0 h = l  

+ N~ cos [k (9 nt)]} exp (-- k2t), 

(2.7) 

where M k and N k are the Fourier coefficients of the function G0(9): 

2~ 2~ 
I 

Mk = i ~ Go(9)sin(k9)d9 ' Nk = -~ S G~176 
0 0 
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As might be expected, at t + ~, the solution of (2.7) approaches the mean value of the 
initial concentration G0(~), i.e., it agrees with (2.4) at h = const. 

3. Dispersion of a Substance in a Spherical Gap. In this case, it is most convenient 
to conduct the study in spherical coordinates, since the internal boundary of the region is 
the coordinate line r = R. For the external boundary, we have r = R[I + gh(~, 0)] (Fig. 3). 
As Sn part 2, due to the condition e << i, it is also expedient to introduce the coordinate 

= (r - R)/eR, ~ e [0, h(~, 0)], characteristically encountered in the hydrodynamic theory 
of lubrication. The equation of convective diffusion contains one more space coordinate than 
previously; 

[ �9 ] 82 8c Uo 8e u; 8c Uo 8e 
~" + (t + s~) 80 7}- sin 0 (1 + e~) OqD + e Pe (1 + ~ )  ao + 

u,# ac] 02c 2~ 8c 
+~i~oSq-~) ~ = 7 ~  + (t+~-----T~ + 

(3.1) 

�9 + sin 0 (t + e~) ~ ~- sin 0~-~ + sin----ff O~ -'7" 

(Pe = UBe/D, t = D~'/tT, u~ = <U~> B/D, Uo = <Uo> B/D). 

Thus, its reduction to the dispersion theory approximation allows us to find an equation 
which contains two space coordinates and three dispersion factors. The first two correspond 
to the effective diffusion over the axes ~ and 0, while the third describes the crossover 
effect. The calculations are somewhat more complicated than in part i, but the method is 
the same. As a result, taking into account the continuity equation, the condition corres- 
ponding to impermeability of the surface of the sphere or an impurity, and the analogous 
condition (the analog of the second equation of (1.3)) for the external boundary of the 
region, we obtain 

8G *~G U(p ~ I I 1 8 [ 8--'t" -~ u0 ~ + sTn O aq) = h (% 0-------5-. ~ ~- h (% O) sin O (Pe~Doo (% O) + ( 3 .2  ) 

] [ oo] + t)~~ + ~i~ o 8 ~  2__ h (% O) (Pe ~ O~(% O) + t) ~ + 

,o, r o ,,. + s-~-6"lbT\h(q), 0)Do(p(% O)~-~)+ 8G 

where 
h 

D~j (% 0) = ~- ~ (Ih(I)fl$, ~, =J'u,(% 0, ~)d~, 
o 0 

i, 7 = % 0 ,  (3,3) 

i.e., the subscripts i And j in (3.3) can take any value of ~ and/or 0. Also, D8~ = D~0. 
It should be noted that the crossover phenomenon is related only to the convective motion 
of the fluid (not the molecular analog in (3.2)). 

In the general case, the analytical analysis of Eq. (3.2) is fairly complex. Possible 
simplifications of (3.2) will be discussed in part 4 when examples are presented. For now, 
we note that, as in part 2, it is easy to determine the equilibrium concentration at t + =. 
This is found from a formula similar to (2.4): 

G~=o ~ d~.o G~ O)h(T'O)sinOdO/! dT h(%0)s in0d0 .  

Here, Go is the value of G at t = 0. The latter is found from (1.8) with natural relabeling 
of the variables. 

4. Examples. The above-obtained basic dispersion equations(l.6), (2.2), and (3.2) contain 
coefficients of effective diffusion. These coefficients can be determined if we know the 
solution of the hydrodynamic problem. We will henceforth deal only with the convective part 
of the dispersion factors, since the remaining part is easily found for a region of known 
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Fig. 3 

geometry (a known function h), i.e., we will be concerned with coefficients which contain 
the multiplier Pe 2 in the corresponding equations. The values of the dispersion factors will 
be presented in dimensional form so as to more accurately reflect the effect of giwm param- 
eters on the multiplier. 

As the first example, we will examine the well-known problem studied by Reynolds and 
concerning the motion of a layer of lubricant between flat plates. This corresponds to the 
problem in part 1 with a linear function h(x). Here, we will use the Reynolds solution [6] 
written in dimensional variables. Let the XOZ plane be shifted in the direction of the X 
axis at the rate U. Located a certain distance from this plane is a plate of infinite width 
and finite length. The plate is inclined at an angle ~ to the XOZ plane. The flow region 
between the plate and the plane and the corresponding parameters are shown in Fig. 4, here 
h I and h 2 are the thicknesses of the layer at the left and right ends of the plate. Thus, 
we find the layer thickness h that 

h = h  1 - X t g a  = h  1 - m X , m  = t g ~  = (h l - -h~ ) / I .  

The c h a r a c t e r i s t i c s  o f  t h e  f l o w  a r e  n a t u r a l l y  i n d e p e n d e n t  o f  t h e  Z c o o r d i n a t e .  

The solution of the hydrodynamic problem in the lubrication theory approximation is 
well-known [6]. We will present the characteristics of this solution that are needed for 
further analysis. The velocity profile over the X axis 

Ux = U(l - -  Y/h ) - -  (29)-~(dp/dX)(Yh - -  Yf) ,  ( 4 . 1 )  

which gives us the following expressions for mean velocity 

h 

t ~ U h 2 dp ( 4 . 2 )  
<Ux> = ~ .  UxdY = ~ 12~ dX 

0 

and the flow velocities relative to the mean value 

U x = U~ - -  (U~> = U(L'2 - -  v) + h~(dp/dX)(l - -  6v + 6v2)/i2~ ( 4 . 3 )  

(v = Y/h ,  w h i l e  ~ i s  t h e  a b s o l u t e  v i s c o s i t y  o f  t h e  f l u i d ) .  The g r a d i e n t  o f  p r e s s u r e  p i s  
determined by the formula [6] 

~ d p 6 p ~ U (  ) h *  h* 2hlh2 ( 4 . 4 )  
dX h2 1 - - ~  , h i + h f .  

For the function Cx, determined by (1.5), we have 

(I)~(v) = A~v(l  - -  v)- -  B~v(l - -  v)(fv - -  l),  ( 4 . 5 )  

A x = Uh/2, B~: = (h~/t2~t)dp/dX. 

Calculation of the convective part of the dispersion factor from Eq. (1.7) with allowance for 
(4.5) leads to the expression 

D~(X)=3-65  T Bx = i2--~ i + T \  hid ' ,  
(4.6) 

It should be noted that although Eqs. (4.1-4.4) constitute the zeroth approximation 
(with respect to g) of the solution of the hydrodynamic problem, they are quite adequate for 
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Fig. 4 

calculating the dispersion factor in this approximation. The same applies to the other 
examples illustrating the given point. 

It is easily seen that an increase in X is accompanied by a monotonic decrease in D x. 
Meanwhile, the ratio of these coefficients at the end points of the interval X e (0, s is 
equal to (hl/h2) 2. In the special case of constant h (h = h I = h 2 = const), the coefficient 
D x is also constant. 

As the second example, we will examine the dispersion of a substance in the gap of a 
cylindrical bearing. The hydrodynamic part of the problem was studied by Sommerfeld and was 
described in detail in [7]. If the external surface of the flow region is represented as a 
circle positioned eccentrically relative to the internal surface, then to within terms of 
the second order with respect to E the equation of the external surface will be [7] (Fig. 5) 

h(r = e(t - -  ~ c o s  T), r ~ (0, 2u),  ( 4 . 7 )  

where I = e/~; e = R' - R, i.e., e is a dimensional parameter differing from the parameter 
in part 2 by the multiplier R. It is assumed that the length of the cylinders in the axial 
directions makes it possible to ignore and effects. Meanwhile, the internal cylinder is 
rotated clockwise with the angular velocity m. 

As was noted in [7], the relations which take the place of (4.1-4.4) - and, thus, (4.5- 
4.6) - keep their form in the given example with the substitutions 

dp t dp 2Q 2a (t - -  ~,2) 
U - + o R ,  h- f  + E -~  , h * -+ -5- if- 2 + ~  

(Q is the rate of fluid flow through the gap), as well as the replacement of the subscript x 
by r in the quantities Ax, BX, ~X, and D x. Thus, the value of the dispersion factor is ob- 
tained frlom Eq. (4.6) with the given substitutions. 

The third example corresponds to the problem in part 3 and pertains to the dispersion of 
a substance in a gap of a spherical bearing, between eccentrically positioned spheres. The 
internal sphere rotates, while the external sphere is stationary. The hydrodynamic problem 
was solved in a lubrication theory approximation in [7]. More precisely, the author of [7] 
solved a somewhat more general problem in which the internal sphere underwent translational 
motion. This circumstance leads to a change in the geometry of the flow region, i.e., where- 
as the instantaneous velocity field is used instead of calculation to determine the resultant 
and the moment of the force acting on the internal sphere, a change in the boundaries of the 
region for problems involving heat- and mass transfer occurring within the gap in a certain 
time intercval necessarily complicates the analysis (this complication being connected with 
allowing for a new time scale for the change in the form of the region). However, we will not 
consider the change in the geometry of the region in the present study. Instead, a simplifi- 
cation will be made in the corresponding formulas when the results from [7] are used below. 
Specifically, we will assume that the vector of translational velocity is equal to zero. 

Following [7], we will examine the motion of a viscous incompressible fluid in the gap 
between two eccentrically positioned spheres with centers O, O' (Fig. 6) and radii R and R' 
(R' > R). The difference in the radii e = R' - R will be assumed to satisfy the inequalities 
s/R, e/R' << i. We will use a spherical coordinate R, 8, ~, having drawn the OZ axis through 
the centers of the spheres as the polar axis. Meanwhile, the OXZ plane of the reference 
point for longitude ~ is drawn through the vector of angular velocity ~ (in those cases when 
the vector m is parallel to the axis Z, the reading of ~ is arbitrary) (Fig. 6). The trans- 
verse dimension of the cavity at a certain point M, determined by the coordinates 8 and ~, 
will be designated as h(~, 8) and be found as the distance between points M and M' on internal 
and external spheres located on the same radius drawn from the center O of the internal sphere. 
Then, with an error of the order of (g/R) 2, we obtain an equality which is analogous to (4.7): 
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h = ~(I + L Cos 0), O~((), ~), i.e., h is independent of T. In this case, eccentricity e is 
determined as the distance between the centers of the spheres 00' (Fig. 6). 

In accordance with the results obtained in [7], the structure of the solution of the 
hydrodynamic problem is similar to Eqs. (4.1-4.3). The main difference is that there are 
now two velocity components U~ and Ue, two components of mean velocity, etc. Thus, for the 
quantities corresponding to the coordinates ~ and O, we need to make the following substi- 
tutions in Eqs. (4.1-4.3) 

u~ dp (R s i n  O)-lOp/&p 5~ A, B, 
Ux for , ~- for U for Ax for Bx for B~'  

uo B-lOp/OO ' U~' Ao' 
Or 

(~x for qbe" 

With allowance for the above simplifications, the corresponding formulas 
0 0 reduce to the form and the velocity components U , U 8 

6~tR2~ sin ? (2 --{- L cos O) sin 0 sin q~ 
P = - -  - ~a (4 + ~2) (t + ~ cos 0) ~ ' 

= (oR Ices ? sin 0 - -  sin ? cos 0 cos q~], ~o  ----- - -  (oR sin ? s i n  (p 

[7] for pressure p 

(4.8) 

(~ is the magnitude of the vector of angular velocity; y is the angle formed by the polar axis 
and the vector ~). 

Having calculated the derivatives of pressure p (4.8) and having inserted them into Eqs. 
(3.3), we obtain Eqs. (4.6) with the following changes in notation for the diagonal elements 
of the dispersion-factor matrix: 

D r  [ ~ 1 7 6  { 
120D (cos y sin 0 -- sin ? cos 0 cos q~)~ + 

[% sin 7 cos r (2 + ~, cos 0)] ~ 1 
~- 7 (4 .~_ ~,2)2 ' } 

D o e =  [~  sin ? sin r / ~2 (3L + 2 e~ 0 -t- ~'2 e~ 0)n-'+ ] 
t20D 7 (4 + ~,~)2 (1 + ~, COS @)~ , 

( 4 . 9 )  

while for the crossover matrix DO, we obtain the formula 

X 

Do~----~-~ff AoA,~ § = ' ~20o X 

[ , .L '  cos ,p (2 + ~, cos O) (3~. + 2 cos O + L 9 eosO) ] 
7 (1 + ~ cos 0) (4 § ~3) 2 + cos 0 cos (p - -  c tg  7 sin 0 . 

(4.1o) 

Equations (4.9-4.10) are simplified considerably when the polar axis coincides with the 
direction of the axis of rotation. In this case, sin ~ = 0 and we find from (4.9-4..10) that 
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De, = 0, Dee = 0, D,~= [mRg (i + Icos e) sin 812/120D. Then it is easily seen that u~ = 0, 

so that (3.2) is in essence reduced to unidimensional equation (2.5) with the corresponding 
transformations of variables. This occurs because we now consider only the dispersion terms 
in (3.2) that contain the multiplier Pe 2. Here, the variable 8 begins to act as a parameter 
in the equation. Another possible simplification of (3.2) is the existence of concentric 
spheres, i.e., I = 0. In this case, the equation reduces to the case already examined, since 
the axis of rotation becomes the only direction in the problem. As a result, it is best to 
take this axis as the polar axis, i.e., we take T = 0. It is assumed that the vector of 
angular velocity does not change over time in this instance. Otherwise, m and T and the 
reference point for longitude ~ would be functions of time. In the latter case, ~ would be 
replaced by ~ - ~0(t) in all of the formulas. This situation would require substantiation of 
both the hydrodynamic relations for the velocity components, since they were found from the 
solution of the steady-state problem, and the relations for the scales, of the characteristic 
times in the mass transfer problem. It is clear that these equations can exist if the vector 

changes slowly enough. 

5. Remarks. The example discussed in part 4 dealt with partial differential equations 
with variable coefficients, which are fairly complex for the purposes of exact analysis. 
However, in the case of a small degree of eccentricity etc. - more exactly, at ! J 1 - per- 
turbation methods can be effectively used to find an approximate solution. It should be noted 
that the dispersion factors Dx, D~, etc. have no singularities within the domains. In this 
case, the zeroth-approximation equations for the examples in part 4 essentially reduce to 
(2.5), while the subsequent approximations will contain source terms (which do not especially 
complicate the cons~truction of the solutions). In the case of periodic boundary conditions 
(2.6), Eq. (2.7) serves as the reference solution for the zeroth approximation. 

N. E. Zhukov and S. A. Chaplygin ~sed a biharmonic equation for the stream function ~ to 
obtain the solution of the hydrodynamic problem without simplifying assumptions from lubrica- 
tion theory [6, 15] for a cylindrical bearing during the flow of a lubricant layer at low 
Reynolds numbers. They used bipolar coordinates ~ and ~, which are connected with the Carte- 
sian coordinates by the relations X = a sinh ~/(cosh ~ -- cos $), Y = a sin ~/(cosh ~ -- cos $) (a 
is the geometric parameter). Here, the internal and external cylinders correspond to the 
coordinates N0 and Dl, respectively. The dispersion relation for analyzing mass transfer in 
the given cylindrical gap can be found by the method substantiated above or by the method used 
in [10-12]. This relation has the form 

oG o I oG ] b(~)~+Qo-~-~ = ~  (Pe~D~(~) + t)~-, (5.1) 

where 

D t  (~) = ~ d n ,  b(~)  = ( ih n - -  cos ~)2 ,  
% % 

while 0, is the stream function minus its component for average motion. The relation is 
easily found from the formulas presented in [6, 15], these equations being omitted here due 
to their cumbersome nature. This last fact complicates calculation of the first integral of 
(5.2) (the second is considered to be elementary). This integral is probably best found by a 
numerical method in the course of solving heat- and mass transfer problems on the basis of 
Eq. (5.i). 

As regards the applicability of the proposed equations (as in dispersion theory), it 
must be noted that dispersion theory equations have been fully validated only for the simplest 
cases involving flow in circular and "planar" prismatic tubes [16, 17]. In these studies, 
the authors first obtained the exact solution and then derived the dispersion equation by 
taking the limit. In the overwhelming majority of studies in dispersion theory, different 
procedures are used for expansions into series etc., without a mathematically clear indication 
of the range of applicability of the expansions. Thus, at present the evidence for the 
validity of dispersion theory is more physical than mathematical in nature. 

We believe that the construction of dispersion equations on the basis of the small- 
parameter method has certain advantages compared to other approaches and is applicable within 
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a broader range of parameters and variables. This method has proven itself in several prob- 
lems of dispersion theory and has generally produced the same results as the other methods. 
In addition, the small-parameter method is a natural yet systematic approach to the construc- 
tion of corrections for the main approximation in accordance with established perturbation 
techniques. All this suggests that the small-parameter method can be used in problems of 
the given type and that the resulting equations can be used for cases of moderate or &arge 
values of e. This is even more the case, in light of the fact that the quantity which is of 
physical importance is the product of the corresponding dimensionless derivative and a 
certain power of the above parameter. The asymptotic character of the dispersion-based 
description of processes - established in the literature [i, 2, etc.] - means that ~lhe 
corresponding derivatives in the equations which are analogous to (i.I), (2.1), and (3.1) 
decrease over time. 

The features just discussed are closely allied with the relationship between the mean 
and characteristic transfer rates. In accordance with (i.i) etc., the ratio of these rates 
should be of the order of s for the conclusions of the theory to be valid. However:, it 
should be noted that only terms in (I.I) with the multipliers Pe participate in the formation 
of dispersion effects. The other, sign-changing terms are to a certain degree averaged (see 
(1.5), (1.7), for example) and accompany the second derivative with respect to the coordinates 
in final dispersion equation (1.6). To a certain extent, this makes the transport of material 
by the flow at the mean velocity equal in importance to transport by the dispersion mechanism. 

Mention should also be made of new results obtained regarding the construction of disper- 
sion factors for flow between coaxial cylinders along the cylinder axis as well as in the 
direction ~ [18]. Three independent components of the matrix of effective diffusion coeffi- 
cients were obtained in the latter study. 
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